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ABSTRACT

s

Weather a

Managing @ requires objective information about the nature of the threat and subjective

te disasters pose an increasing risk to life and property in the United States.

informatio ow people perceive it. Meteorologists and climatologists have a relatively firm

h

grasp o al objective risk. For example, we know which parts of the US are most likely to

{

experience , heat waves, flooding, snow or ice storms, tornadoes, and hurricanes. We know

U
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less about the geographic distribution of the perceived risks of meteorological events and trends. Do

subjective perceptions align with exposure to weather risks? This question is difficult to answer

t

P

because anal have yet to develop a comprehensive and spatially consistent methodology for
measuring tions across geographic areas in the US. In this project, we propose

a metho%o gy that uses multilevel regression and poststratification (MRP) to estimate extreme

weather and,cliate risk perceptions by geographic area (i.e., region, state, forecast area, county).

Cl

Then we a methodology using data from three national surveys (n = 9,542). This enables us

to measur p,Band compare perceptions of risk from multiple weather hazards in geographic

S

areas acro ntry.

U

KEY WORD e weather, risk perceptions, geography

N

1. INTROD ON

o

Weather"and®Climate disasters pose an increasing risk to life and property in the United States.

In 2017, the 16 weather and climate disasters with losses exceeding $1 billion each, including

Y

three t nes, three severe thunderstorms, three tornadoes, two hail storms, two inland

floods, a crop freeze, a drought and two wildfires. The cumulative cost of these events was $309.5

[

billion, the mast in US history (Smith, 2018). Reducing these costs and managing risk requires both

O

objective i n about the nature of the threat and subjective information about the risk
perceptio diverse individuals affected by these threats. To improve hazard communication

(e.g., forecasts) and decision support, those who are responsible for communicating information

th

about the extreme weather and climate disasters (e.g., emergency managers, broadcast

U

meteorolo rning forecast office meteorologists) need to understand how people think about

and res isk.
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Meteorologists and climatologists collect and compile data on the frequency and severity

of extreme weather and climate hazards across the US (NOAA, 2019; National Drought

{

Mitigation r, 2019). As such, researchers have robust knowledge about the geographic
distributi ive risk from different weather and climate hazards across the country.
By compison, less is known about the geographic distribution of risk perceptions across
weather ardgy This project is focused on understanding how risk perceptions vary

geographica¥rrespective of a single event, and the extent to which risk perceptions align

S

with haza pasure.

I

Using an alldazards approach, we investigate the hazard exposure vs. risk perception

relationsh s eight different hazards in 115 geographic regions. This investigation

£

allows us to statistically identify exposure-perception “gaps” across communities and hazards

which could 1 te vulnerability. In some cases risk perceptions may be low in comparison

to exp 1S may indicate that these communities do not fully recognize the hazards they

may s e future. Alternatively, risk perceptions could be high in comparison to

Ma

exposure. This may indicate that communities are overpreparing for some hazards at the

[

possible r derpreparing for others. In both cases, one can imagine the value of local

risk com bn and education strategies that focus on closing these gaps in potentially

vulnerabl nities.

g

In ata about possible vulnerabilities across communities, investigation of the

.E

exposure- n relationship across hazards provides valuable information about (i) the

U

hazards that people perceive and worry about and (ii) the hazards that are historically present,

but se otable. Extreme heat is one such example where past research indicates that

A

exposure is relatively high in many places that tend to have low risk perceptions (Howe et al.,
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2019). A relatively low correlation between exposure to and perception of extreme heat may
be an indicator of vulnerability that is applicable across communities. Recognizing this low

correlation ﬁ help national organizations such as FEMA and the NWS develop strategic

risk com

N
otherwise sverlook.

Furthdfmore, by measuring risk perceptions across the contiguous US, we can begin to

nd education campaigns to help people perceive hazards that they might

C

address imgo questions: Do concerns about natural hazards vary systematically across

the countr

S

these risk perceptions align with objective indicators of exposure, such as

3

those collected b§ NOAA? Do individual risk perceptions correlate more strongly with risk

exposure hazards and not others? If so, which ones? Do these perceptions influence

N

risk communication? These questions are difficult to answer because there is not yet a

d

comprehe

d spatially consistent methodology for measuring risk perceptions across

geogra rcas in the US. This paper uses data from ongoing national surveys where we

apply methodology in survey research to fill this gap.

1.1 Weatlsr and Climate Hazard Risk Perceptions

Risk per ions represent intuitive judgments about the probability of a given risk (event) and
concern a consequences of that risk (event) if it were to manfiest (Slovic, 1987; Sjoberg,
Moen, ﬂzow. Both theory and research indicate that risk perceptions are among the
most imp*ant d'v‘ ers of protective action in response to a wide variety of weather and climate
hazards ( Miller, & Rivera, 2007; Dow & Cutter, 2000; Lindell, Arlikatti, & Prater, 2009;
Lindell & P . 2; Mileti & O’Brien, 1992; Mileti & Sorensen, 1990; Murphy et al., 2009; Ristemli
& Karanci, 1999; Ramasubramanian et al., 2019; Whitmarsh, 2008). As such, “best practice” guides

i S
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to risk communication in specific communities often begin by emphasizing the importance of
understanding risk perceptions (e.g., Perry & Lindell, 2003).

hazard ris s. For example, research consistently shows that white men often view

Differelc:: among individuals within communities strongly influence weather and climate
hazards as Ess risky than their female and minority counterparts (Flynn, Slovic, & Mertz, 1994). Age
can influencg risk perceptions as well, but the direction of the relationship is less consistent across

hazards ( r et al.,, 2013). For some hazards, risk perceptions seem to increase with age

(Kellens etfal.,f201/); for others, there is no meaningful relationship (Plapp & Werner, 2006; Siegrist

& Gutsche These differences are likely driven by multiple mechanisms including variable
-

access to vl , trust in authority, and worldviews (Kahan et al., 2007; Kahan, Jenkins-Smith, &

Braman, 2‘1; Siegrist & Cvetkovich, 2000; Siegrist, 2019).

In adcm differences among individuals within communities, differences between
comm Uil also influence risk perceptions. For example, a long line of research
suggests th e communities develop “subcultures” through collective experiences that
influence the ways in which people in a given community perceive and respond to disasters

(Andersong1965: Sims & Baumann, 1972; Weller & Wenger, 1973; Granot, 1996; Engel et

]

al., 2014; 2017). In addition to subcultures, differences in community sensitivity and
exposure can_perpetuate variation in risk perceptions between communities. Sensitivity
indicat t to which demographic attributes, infrastructure, or other structures in a
commuwate vulnerabilities that predispose the community to loss during disasters
(Cutter, Boruff, .} Shirley, 2003). Exposure, by comparison, indicates the frequency with
which hum a given area come into contact with hazards, both historicially, and in the

future (Bu ates, & White, 1993). Geography often influences exposure because many
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hazards are more (or less) common in given climates and landscapes. Exposure contributes to
the probability side of the objective risk equation, whereas sensitivity contributes to the

consequencgsaside of the equation.

Previous researc
H I

indicates a somewhat tenuous relationship between exposure and risk

3

perception eather and climate domains. A few studies in specific communities indicate a

modest rel@tionship between flood risk perceptions related to exposure (Siegrist & Gutscher, 2006;

C

Horney et al, 2 : Siebeneck & Cova, 2012; O’Neill et al., 2016; Royal & Walls, 2019). Other studies

S

in differen nities indicate little or no association between flood exposure and perceptions

(Wallace, Poole, & Horney, 2016; Tanner & Arvai, 2018). While informative, these studies of the

Ll

relationshi n exposure and perceptions are subject to a variety of limitations. Most notably,

I

most of t rch in this area focuses on flooding, so we know relatively little about the

connectionll béwegn exposure and perceptions to other weather and climate hazards (but see

d

Champ mith, 2016). Additionally, much of the research in the area focuses on people in

specific com s, which limits the generalizability of the findings. A recent study by Howe and

Vi

colleagues (2019) represents a notable exception to these limitations. It investigates the geographic

distribution§ of heat risk perceptions in communities across the US, finding that subjective

[

perception th risks from extreme heat exhibit strong geographic patterns that relate to, but

QO

do not direc rlap with, extreme heat exposure.

The pra&sent study builds upon Howe et al. (2019) to measure and map public perceptions of risk

h

from ei extreme weather and climate hazards—extreme heat, drought, extreme cold,

L

extreme snow (orfee), tornadoes, floods, hurricanes, and wildfires. The data and maps provided are

Ul

A
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publicly available! and the geographic relationships they depict will help risk communicators (e.g.,

forecasters, broadcast meteorologists, emergency managers) develop messaging strategies and

t

P

education fhitjatives that are specific to the communities they serve. In addition, the data and maps

facilitate a arch into the variety of factors explaining community perceptions of risk. To
demons!ra IS point, the analysis examines the relationship between hazard exposure and risk
perceptions across hazards in the US.

2. MET

21. D

scn

2.1.1. EstiugtiowmSurvey Data

U

The data we use to estimate subjective risk perceptions across geographic areas come from a

[

national s t is conducted annually by the Center for Risk and Crisis Management at the

University oma. This survey, called the Severe Weather and Society Survey, measures

a

weather and climate risk perceptions and information reception, comprehension, and response

across extrem ther and climate hazards. This analysis uses data from the 2017, 2018, and 2019

V]

surveys 003752998, & 2,998, respectively). All surveys were implemented online to samples of

adults (agegl8+) that reside in the Contiguous US (CONUS). The samples were provided by Qualtrics,

I

which uses ampling from opt-in panels based on demographic characteristics. While there is

O

some deb e literature about which sampling method is best, research suggests that the

results froff opt-in panels and probability samples are relatively comparable (Baker et al., 2013;

g

Berrens etgl., 2008; Chang & Krosnick, 2009; Maclnnis et al., 2018). Of participants who started the

N N

" For dat s and interactive maps, see https://crcm.shinyapps.io/WxDash/.

{
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survey, 79.9% went on to complete it. Further information about data collection and preliminary

frequency information can be found in Silva et al. (2017; 2018; 2019).

{

At the g of the survey, participants responded to a battery of demographic questions

and then xtreme weather hazards on a five-point scale (no, low, moderate, high, or
H I

extreme rigk). The eight hazards—extreme heat, drought, extreme cold, snow/ice, tornados,

flooding, rican@s, and wildfires—were presented in a random order for each participant. The

&

question wording was: “Thinking about all four seasons (winter, summer, spring, and fall), how do

S

you rate t k @f the following extreme weather events to you and the people in your area?” Note

that this wording¥s intentionally nebulous; it does not instruct survey respondents to think of a

b

specific defjgii r dimension of risk when providing a judgement. It also suggests that participants

M

consider al sons, so as to encourage participants to avoid using common cognitive shortcuts

(e.g., recenty % availability heuristic, affect heuristic). As a result, the measure likely reflects the

d

wide v ors that may influence participant risk perceptions, ranging from perceptions of

exposure (the ability of an event) and sensitivity (vulnerability to an event) to perceptions of

M

severity, consequences, and resilience. This variety reflects the subjective and heterogenous nature

of risk perdgptions, but it may complicate precise interpretation of the results.

[

2.1.2. V. burvey Data

I‘

The d e to validate the estimates come from an additional independent oversample of

N

approximately 50 survey respondents that reside in a random set of 30 National Weather Service

{

County W ammi eas (CWAs) across the US (n = 1,543). The same sampling methodology and

U

survey que ere used to collect the estimation and validation data.

2.2, el Regression and Poststratification (MRP)

A

2.2.1. Methodology
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Following Howe et al. (2019), we use Multilevel Regression and Poststratification (MRP) to

estimate the distribution of geographic risk perceptions in the Contiguous United States (CONUS).

t

P

MRP is an'increasingly common technique in survey research that uses national data to estimate
preference ns, and behaviors in small geographic areas (Buttice & Highton, 2013; Lax &

PhiIIips,-Z ; Zhang et al., 2015). The technique is particularly robust for domains in which

geography (location) impacts the variable of interest. We use County Warning Areas (CWAs) as the

CI]

geographic analysis because they define the zones for which each NWS Weather Forecast

Office (WHO) i§ reBponsible for issuing forecasts and warnings. In the current analysis, we include

$

data from WAs in the CONUS. As the name suggests, MRP involves two steps—multilevel

regression n poststratification. In step one, we estimate models for each of the hazards’:

0 gender age genderx*age race ethnicity area

nu

gender 2 .
a; ~ N(O, O'gender),j =lor2

apd~ N(O, a(fge), k=1,2,0r3
aﬁ,f"der*age~ N(0, 0Zengersage), j=1or2andk=1,2,0r3

al €~ N(0,0%c),1=1,2,0r3

ethnicity 2 _
O ~ N(O' aethnicity)l m=1or2

thor Ma

adred ~ N(BE*POSUTe x exposures, 62req), S =1, ..., 115

;

% The m ere fit using the rstanarm package in R. See Goodrich et al., 2018 for details.
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The models have two levels. Individually, a participant’s risk perception score for each hazard

(y;) varies as a function of the participant’s demographic profile (gender, age, a gender-age

{

interaction, r and ethnicity) and geographic area (CWA). CWA effects vary in relation to
exposure.? estimation, we use the parameters from these models to predict risk
percept%n—ioreach demographic-geographic combination. In all, the models provide estimates for
two gender groyps (male and female), three age groups (18 to 34, 35 to 59, and 60+), three race
groups (WI‘Q(, other race), and two ethnicity groups (non-Hispanic and Hispanic), allowing us
to make wgraphic combinations in 115 CWAs across the country. For example, one
demograp:aphic combination includes participants who are female, age 18 to 34, white,

non-Hispa eside in the New Orleans County Warning Area (CWA).

In ste;Ce use poststratification to weight the predictions (8) for each demographic-

geographition (r). We use US Census data to identify the population frequency of each

demogr aphic combination. The population estimates were obtained from the US Census

Annual Estim f the Resident Population by Sex, Age, Race, and Hispanic Origin for the United

States and States (US Census Bureau, 2016). These frequencies (N) provide the weights we use to

produce tf! MRP estimates for each CWA:
MRP ZTECWA NTBT
Yewa =——
2:reCWA

’Asa rob@heck for the results, we additionally run the MRP without hazard exposure

as a predi replicate the results (See Appendix Figures A1-A4).
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This methodology allows us to estimate average area risk perceptions within each CWA for all

eight hazards.

T

2.2.2. Exﬂ

Wepgisggili@mhlational Center for Environmental Information (NCEI) Storm Events Database to
measure egcross all but one of the hazards (NOAA, 2019). Specifically, we use data from the

last 22 yeafs (1998)- 2018)* to calculate the mean days per year that each CWA experiences a heat,

cold, snow ado, flood, hurricane, or wildfire event (See Table A1l for a list of the Storm Event
types that we associate with each hazard). We use data from the US Drought Monitor to produce a
comparablare for drought (National Drought Mitigation Center, 2019). While these
calculation@ovide information about the probability of hazards in CWAs, they do not address

the sensitivity or consequences, so we adopt the term exposure in place of objective risk in the

sections th@t f .

3. RESU

3.1. ic Distributions of Exposure

The is in Figure 1(a) plot exposure to weather and climate hazards by CWA. Most of the

hazards exb:ographic pattern, but some of the patterns are more variable than others. For

example, t events concentrate in the Midwest and Central Plains, cold temperature events

are most c!mmon in the Upper Midwest, and drought events are more likely in the West. Wildfire,

snow/icw events, by comparison, exhibit more geographic variation.

N N

* Data fr S Drought Monitor only includes data from the last 20 years (1998-2018).
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[Figure 1]

3.2 W Distributions of Risk Perceptions
The m 1(b) show the MRP estimates of average risk perceptions by CWA across the

hazardsgComsisieii with Figure 1(a), most of the estimates exhibit a geographic pattern, but some
are more vh‘uan others. Hurricane risk perceptions, for example, are highest along the Eastern

and South(n co,tlines, where hurricane exposure is the greatest. Flood risk perceptions, by

comparisomit more diffuse.
3.3. VSEstimates of Risk Perceptions

We valﬁ estimates of risk perceptions in two ways. First, we compare the risk perception

estimates vations from the independent validation sample we describe above (Section
2.1.2). Them Figure 2(a) plot bivariate relationships between the risk perception observations
from th nt validation survey data and the original MRP risk perception estimates. There

are consisten ng positive relationships between the two variables, but the correlations vary
across the hazards. Six of the eight correlations are 0.90 or above, while the remaining two are 0.71
(Floods) als 0.79 (Extreme heat waves). While relatively high, we are able to double check the
validity of risk perception estimates by comparing them to the estimates provided by Howe
et al. (2019 uses different survey measures and data. By aggregating county estimates’ from

the previos Howe et al. (2019) study to CWAs and then comparing the previous estimates to the

current Migure 2(b) plots the comparison of our heat risk data to Howe et al. (2019) heat

data. As in Elgureja), the comparison reveals a strong positive correlation between the measures (r

> We wej county estimates by population during the aggregation process.

This article is protected by copyright. All rights reserved.



= 0.75). In combination, these comparisons corroborate the validity of the MRP risk perception

estimates.

[Figure 2]

ot

[l

34. Comparning Risk of Hazard Exposure to Risk Perceptions

G

Do risk, pesgeptions align with exposure or do perceptions misalign in ways that may

S

complicat mmunication? The panels in Figure 3(a) address this question by plotting

the bivariate relaflonships between risk perception estimates and exposure.® There are strong

A

relationsh een risk perceptions and exposure to tornado, hurricane, and drought

1

events; a e relationship between perception and exposure to snow/ice, wildfire, and

¢l

extreme c@ld @ s; and a fairly weak relationship between perceptions of risk and exposure
to floo vents. The moderate and weak correlations suggest possible misalignments

that ma icate communication and possibly jeopardize resilience in CWAs where risk

M

perceptions are significantly lower (or higher) than we might expect based on exposure.

Figurehlustrates this point by plotting the five communities with the largest

residuals erences between risk perception estimates and exposure estimates) when
modeling ceptions as a function of exposure to flood and heat events. Estimates
sugges ple, that residents of the Houston/Galveston, TX and New Orleans, LA

CWAs peteive more flood risk than exposure suggests; the opposite is true in the San Diego,

® For mozgag ation and interactive graphs, see https://crcm.shinyapps.io/WxDash/
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CA and Albuquerque, NM CWAs, where residents perceive less risk than exposure suggests.
Similarly, estimates for Phoenix and Tucson, AZ suggest that residents perceive more heat
risk than ¢ re suggests. One potential explanation for these results is the presence of
unique di&ltures in these areas (Engel et al., 2014); for example, areas in Arizona
such as-Pgmnd Tucson may have a culture that is highly attentive to heat as a result of
their average high heat, relative to other parts of the US, even if events that are considered
extreme rgo this area may not be common. More exploration is necessary, but our
results mw reflect a few well-known characteristics of risk perceptions: (1) that
communitg aggregate) weight event severity (consequences) more heavily than
frequency Eﬂity) when judging risk (i.e., probability neglect; Sunstein, 2001); and/or

(2) that ¢ ities draw on recent or especially salient events when judging risk (i.e.,

availabilimstic; Tversky and Kahneman, 1973). Demuth’s (2018) careful
concepgualization, of tornado experience may also help explain these residuals; specifically,
she finds m asures of memorable experience and multiple experiences are positively
associated with risk perceptions, but not all. For example, the 2017 Hurricane Harvey event
in Housto!Galveston, TX, was a high consequence case that likely amplified residents’ risk
perceptio though the community’s exposure is relatively modest in comparison to
county wa areas that experience many floods of lower consequence.

[Figure 3]

th

4. CONCLUSIONS

U

The tudy presents maps of natural hazard exposure and subjective risk

percep oss geographic regions of the Contiguous United States (CONUS). While

A

many previous studies on exposure and perception have focused on very fine-grained
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differences in narrow geographic regions (e.g., cities and counties versus across the CONUS),
the present study aims to provide more holistic evidence of varying risk perceptions across
geographic regions.

For th the current research demonstrates that concerns about natural hazards

H ) . . .

vary systegnatically across the country. Moreover, these risk perceptions generally align with
objective amdicagors of exposure. Importantly, though potentially due to differences in
measureme measurement error, some risk perceptions correlate more strongly with

exposure.w, while the perception-exposure relationship for hurricanes, tornadoes, and

drought are strofg (all correlations greater than 0.80), the perception-exposure relationship

U

for floodin heat are not as robust. One reason for the smaller perception-exposure
correlatio be that individuals across the US are unaware of their exposure and

therefore o w risk to making maladaptive decisions. Another may be that our measures of

d

expos ing and extreme heat risk are especially imprecise. For example, in areas
such as Pho r Tucson, our models suggest risk perceptions are much higher than our
exposure measure would predict. This could be due (at least partially) to threshold differences

in the deiition of an “event” or differences in reporting practices across NWS offices.

Additiona measure of exposure does not account for respondents’ higher levels of
absolute he posure to which they may be calibrating their risk perceptions. Regardless,
these res suggest that research into improving risk communication products for

heat/ ﬂoﬁe more fruitful, than for other better understood hazards.

The geograslic maps we present can help inform forecasters and broadcast
meteorologi o are interested in effectively communicating risks to their respective
commuﬁhermore, CWAs where individuals believe they are safe from heat waves,
but actually face significant exposure might particularly benefit from educational or
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informational interventions. Having a standardized method to measure risk perceptions across

time and space will support research interested in tracking the effectiveness of changes before

{

and after in tions.

Implic ide, we recognize there are significant limitations to this study that may provide

|
opportunities for future research. First and foremost, we use exposure as a rough proxy for objective
risk. Previous rasearch (including evidence from this study), suggests that people evaluate both

event freq robability) and severity (consequences) when formulating perceptions of risk

10

o

(Weinstein et al., 2000). However, the subjective risk perception prompt was relatively vague, asking

simply, “... ou rate the risk of the following extreme weather events to you and the people

L.

in your arear Is wording leaves it up to the participant to decide the extent to which they weigh

the occurr@pce of the event in their area, and the potential impact of a hazard. It is therefore

[

important ure work attempt to capture both frequency and severity when measuring

d

objective and stBjective risk. Data limitations will likely complicate this task. Furthermore, because

the present oes not explicitly unpack what participants’ judgments of risk are based on (e.g.,

W'l

conseq uency, recency), the current study is unable to provide holistic prescriptions on

how communicators may improve risk communications or education materials.

I

Here, he Storm Events Database to measure exposure. Inconsistencies in reporting

O

across space, , and event type can make it difficult to reliably measure event frequency. These

inconsistengies are even more apparent in attempts to measure event severity (e.g., fatalities,

h

injuries, nd crop losses). More specifically, data from the Storm Events Database are

|

aggregated from @ variety of sources, including news stories and observer reports. Definitions of

U

what counts as ‘event” may vary, systematically or randomly, from one place to another, which

likely i ur measures of exposure. This limitation in the data may lead to cases where risk

A

perceptions appear misaligned with the measure of exposure. Nonetheless, we expect that including
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information like this, if reliable, will improve (i) estimates of objective risk, (ii) MRP estimates of

subjective risk perceptions (that partially rely on estimates of objective risk), and (iii) comparisons

between t* .

While esearch on risk perceptions and risk communication has focused on
N
averages (W¢., the notion that standard risk communication methods will work for all people),

this resea@gests that geographic location and experience with hazards might be

important indisgidual differences that influence risk perceptions. Given the relationship
between riSR p@fceptions, decision making and protective behavior, the present research

suggests that s;e CWAs may be more vulnerable to uninformed decision making when

respondin reparing for natural hazards. While this paper cannot connect immediately
the relati

etween risk perceptions and protective behaviors, understanding the
distributi@eme weather and hazard risk perceptions can provide a basis for measuring

respon tective action. Moreover, as precision for mapping differences in risk

percepti objective risks increases, having a framework for conducting more holistic
risk perception analyses will support future research on individual differences.
The chearch also supports scientists (i.e., meteorologists, forecasters, emergency

managers @ jated social scientists) who are interested in effective methods for risk

communicai ffective risk communication requires systematic, robust, and intimate
knowl ommunity. This knowledge can be difficult and time consuming to obtain,
and hard ass on to employees who are transplants in the communities they serve.
Tracking structs will provide systematic and reliable data across geographic areas in

the US¢HI support employees tasked with risk communication. In addition, it
provides a d to track changes in skills and abilities over time, especially after
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implementing educational interventions, which will support the assessment of the

effectiveness of new policies or decision support systems. Taken together, these methods

provide the_ability to better inform stakeholders and the public of risks and uncertainties,
ultimately; iiag resilient decision making.
H
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Figure 1: Mapping (a) exposure to and (b) risk perceptions from weather and climate

hazards by CWA.
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Figure 3: Comparison of (a) risk perception estimates to exposure to (b) identify possible

perception-exposure misalignments.
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